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Abstract

This paper presents an intelligent user interface
agent architecture based on Bayesian networks.
Using a Bayesian network knowledge representa-
tion not only dynamically captures and models
user behavior, but it also dynamically captures
and models uncertainty in the interface's reason-
ing process. Bayesian networks' sound seman-
tics and mathematical basis enhances it's ability
to make correct, intelligent inferences as to the
user's needs. We show explicit examples of our
agent's reasoning using our Bayesian network and
present results showing the utility of Bayesian
networks in the domain of user interfaces.

Content Areas: user interfaces, agent architec-
ture, cognitive reasoning, expert systems, reinforce-

ment learning, probabilistic reasoning

Introduction

GESIA1 (Generic Expert System Intelligent Assis-
tant) is an intelligent user interface agent architec-
ture conceived out of the development of a generic ex-

pert system shell (Harrington, Banks, & Santos 1996).
This expert system shell, called PESKI (Probabilities,

Expert Systems, Knowledge, and Inference) (Santos
1993), is a collection of expert system tools under one

architecture that is designed to be totally independent
of any application domain. The tools contained in
PESKI include an inference engine (IE), a knowledge

base (called a Bayesian knowledge base (Banks 1995;
Santos & Santos 1996) or BKB), knowledge acquisi-

tion (KA) and associated edit supports (ES) tools, a
knowledge base veri�cation and validation (VV) tool,
and a data mining (DM) tool. PESKI provides three

types of communcationmodes to the user| structured
text, graphical, and natural language. This allows the

user to use PESKI in a way most intuitive. Figure 1

1This research was supported in part by AFOSR
#940006.

shows PESKI's inference engine tool using the struc-

tured text communicationmode. For more information
on PESKI, see the United States Air Force Institute

of Technology's Arti�cial Intelligence Laboratory web
site (http://www.afit.af.mil/Schools/EN/AI/).

Intelligent user interface research is primarily fo-

cused on human-computer interface issues, especially
with the abilities and usability of interfaces. However,
intelligent interface researchers have put little empha-

sis on improving the structures representing the in-
telligence of these interfaces. In this paper, we are

primarily concerned with presenting the utilization of
Bayesian networks in intelligent user interfaces.

It is widely agreed that basing decisions on an

accurate cognitive model of the user is important
for e�ective prediction of user intent and that the

interface should be able to collect and model in-
formation about false inferences (Oppermann 1994;
Thomas 1993). Collecting such data is cognitively

and computationally di�cult (Hewitt & Halford 1993;
Kuhme 1993).

Many research interfaces use rule-based intelli-

gence (Gonzalez & Dankel 1993; Thomas 1993). Rule-
based representations, as well as other knowledge

representations (e.g., memory-based reasoning (Maes
1994)), fail in two key areas - representing uncertainty

and dynamic user modeling. The use of \probability
modules" (Winston 1984) is an ad hoc approach to de-
termining answer reliability, i.e., uncertainty. Further-

more, the addition and deletion of rules to dynamically
model a user is ad hoc. Therefore, knowledge represen-

tations that can dynamically capture and model uncer-
tainty in human-computer interaction can improve the
modeling of the user and user interface states in an in-

telligent user interface. One knowledge representation
that is ideal for representing uncertainty is a Bayesian

Network (BN). A Bayesian network is a mathemat-
ically correct and semantically sound model for rep-

resenting uncertainty that provides a means to show
probabilistic relationships between items (Pearl 1988).



Figure 1: PESKI's Inference Engine Tool in Structured Text Communication Mode

GESIA Development

The goals of GESIA's development are threefold:

� To provide for user access to the many tools of the
expert system using proven graphical interface de-

sign theory and implementation methods.

� To maintain the domain independence of the expert
system, or, in other words, ensure the expert system

can easily be used in multiple application domains.

� To assist the user with managing the complexities of

the generic expert system through the use of intelli-
gence or reasoning capability.

GESIA's user interface provides access to the generic

expert system tools and applications. Figure 2 shows
the three major layers of the architecture: the graphi-

cal layer, the intelligent interface agent layer, and the
system layer.

The graphical layer of the architecture contains Mo-
tif/OSF standard interface widgets. Together, these
widgets form the visual part of the interaction between

the user and the expert system applications. The sys-
tem layer provides the link between the GESIA's user

interface and the expert system applications through
a series of tool drivers, one for each expert system ap-
plication tool.

The intelligent interface agent layer is the most com-

plex and important layer of GESIA. This layer controls
the communications and intelligence aspects of the in-
terface and is composed of three layers: the adapta-

tion layer, the adaptive layer, and the communications
layer. The adaptation layer manages and tracks all

adaptations the user makes to the user interface. The
adaptive layer communicates directly with the inter-

face learning network gateway (explained in the next
section) to perform interface initiated adaptations to



Tool Tool Tool Tool Tool Tool Tool

Driver Driver Driver Driver Driver Driver Driver

IE KA ES VV DMNLI

IIA Layer System Layer

Graphical Layer

USER

Base (BKB)
Bayesian Knowledge

GC

Figure 2: Layered Architecture of GESIA

GESIA's interface based on perceived user behavior.
Finally, the communications layer controls the various

modes of communication available to the interface such
as structured text | provided via the standard XWin-

dows list boxes, text boxes, etc., | graphical commu-
nication (GC) | provided via daVinci 2 as a means to
graphically interact with the knowledge base, | and

natural language interpreter (NLI).

The GESIA Interface Learning Network

The GESIA Interface Learning Network (hereafter re-

ferred to as the learning network) is the heart of the
intelligent interface agent layer. The Bayesian network

knowledge representation captures, stores, and models
user and interface behavior. The network is composed
of two semantically di�erent nodes: interface learning

nodes and interface information nodes. The network
is also composed of containers that store learned user

and user class behavior data and a network communi-
cations gateway.

Interface Learning Node

Semantically, the interface learning node represents

behavior the interface has collected about a partic-
ular system user or class of users. This node is

named according to the behavior collected, for exam-
ple \User Prefers Knowledge Acquisition" or \User's

Class Prefers Knowledge Acquisition." Each node's
probability is stored as a fraction. The denominator
of the fraction represents the number of learning oc-

currences that a�ect the node. The numerator of the
fraction represents the number of learning occurrences

that add to the truthfulness of the node (i.e., a higher
probability).

2For speci�c information concerning daVinci, see
http://www.informatik.uni-bremen.de/ davinci/.

After the user logs into the system, the interface

learning network associated with that particular user
loads stored data about the current system user into

the interface learning node. Whenever the system user
exhibits behavior represented by the node, the inter-
face will call the node's update method to record the

behavior. The updating is based on simple reinforce-
ment learning. In this case, the behavior is recorded

by incrementing the numerator and denominator of
the fraction. For example, let us say we have a net-

work composed of two interface learning nodes, \User
Prefers Knowledge Acquisition" and \User Prefers
Data Mining." If a user selects knowledge acquisition,

the network will update the numerator and denomina-
tor of \User Prefers Knowledge Acquisition" and only

update the denominator for \User Prefers Data Min-
ing." In this way, the network has learned a preference
for one expert system application over another. When

the current user exits the system, the user's current
learning network is saved.

Interface Information Node

Semantically, the interface information node represents
a possible user state. Each interface information node

is supported by two or more interface learning nodes
and zero or more interface information nodes. When

an interface information node is instantiated, it re-
ceives and stores access information to all its child

nodes. The node sits \dormant" until the interface
queries it for its probability, in order to make inferences
as to the user's future state (i.e., (user intent). When

the node is queried, this node combines the probabili-
ties of all the supporting nodes to determine the prob-

ability that state is true using Bayes Theorem (Pearl
1988). This value represents the probability that the
node's state is true. This node is named after the state

it represents, for example, \User is Using Graphical
Communication."

User and User Class Containers

These two parts of the interface learning network are
responsible for storing all the learned user and user

class data respectively. The user container controls
all system logins, allowing the creation and deletion

of users as well as normal logins. The user class con-
tainer maintains information on the four user classes
currently supported by PESKI: application user, appli-

cation expert, knowledge engineer, and computer sci-
entist. When a new user requests access to the system,

the user is prompted as to what user type they belong.
The new user's learned behavior data is initiated to

his/her user class's interface learning network. There-
after, all behavior of the user will not only a�ect the



user's personal behavior (i.e., learning network) but

also the behavior of the user class.

Interface Learning Network Gateway

The gateway provides the communication link between
the learning network and the graphical user interface.
All communication from the graphical user interface to

the learning network must pass through the gateway.
In this way, the gateway promotes information hiding

for GESIA and maintains its generic nature. That is,
GESIA need not be solely tied to PESKI, but usable

with any system requiring an intelligent assistant.

Example of Network Use

This example of a simple network demonstrates how

the network learns and how the learned data can be
used to predict a user's behavior. Figure 3 depicts the

network used in this example. This network has an
interface information node, \User is Using Knowledge
Acquisition" (UKA), that is supported by the interface

learning nodes \User's Class prefers Knowledge Acqui-
sition" (CPKA) and \User prefers Knowledge Acqui-

sition (UPKA)."

User is Using

(UKA)
Knowledge Aquisition

User Prefers

(UPKA)
Knowledge Aquisition

P(UPKA=T) = 0.78
P(UPKA=F) = 0.12

User is Using
Graphical Communication

(UGC)

User Prefers
Graphical Communication

(UPGC)

P(UPGC=T) = 0.44
P(UPGC=F) = 0.56

User’s Class Prefers
Graphical Communication

(CPGC)

P(CPGC=T) = 0.82

P(CPGC=F) = 0.18

Figure 3: Simple Interface Learning Network

For this example, user JANE has logged onto PESKI

through GESIA. The interface learning network loads
all the learned data about JANE and sends the data

to the appropriate interface learning nodes in the net-
work, thus dynamically constructing the reasoning net-
work. With the network loaded, JANE begins to use

PESKI. As JANE performs actions through the inter-
face, the interface records her behavior by calling the

learning method of the IIA, which in turn updates the
nodes related to JANE's behavior. For example, in

Figure 3, if JANE chooses to use graphical commu-
nication from the communication mode menu of the

interface, the interface will call the update data meth-

ods for the interface learning nodes CPGC (i.e., \User's
Class prefers Graphical Communication") and UPGC

(i.e., \User prefers Graphical Communication"). Thus,
JANE's behavior is captured.

The usefulness of the network comes in predicting
user intent (i.e., future behavior). For example, if the

GESIA wants to predict what interface tool JANE will
choose in order to automatically bring this tool up

for her the interface will query the UKA (i.e., \Using
Knowledge Acquisition") interface information node,
calling the node's compute probability method. This

method will then combine the probabilities of UKA's
child nodes.

The probabilities are combined in the following way.
First, we must construct conditional probability tables

for the node of interest and all its parents' conditional
probability tables, listing all possible combinations of

the truthfulness of the causal parent nodes. The values
for the conditional probability table are stored by the

learning network as uncertainty supports.

The uncertainty supports for each node represent

the uncertainty that the interface will make the correct
choice when choosing a particular interface information

node (interface state) as a future state. In other words,
whenever the interface chooses a particular state as

what the user will want next, the interface will store
whether it was wrong or right about its choice. This
value is used in the conditional probability table when

the parent nodes are neither all true or all false. For
Figure 3, the uncertainty support for the UKA node is

0.31. Therefore,
P (UKAj UPGC; UGC; UPKA) = 1:00;

P (UKAj :UPGC; UGC; UPKA) = 0:31;

:::;

P (UKAj :UPGC; :UGC; UPKA) = 0:31;

P (UKAj :UPGC; :UGC; :UPKA) = 0:00:

The uncertainty support for the UGC (i.e., \Using
Graphical Communication) node is 0.65 and its condi-
tional probability table is constructed similarly. Once

the conditional probability tables are constructed,
the probabilities may be combined using the chain

rule (Pearl 1988):
P (UKA = T ) = P (UKA;CPGC;UPGC;UGC;UPKA)

+P (UKA;:CPGC;UPGC;UGC;UPKA)
:::;

+P (UKA;CPGC;:UPGC;:UGC;:UPKA)
+P (UKA;:CPGC;:UPGC;:UGC;:UPKA)

P (UKA = T ) = 1:00 � 0:82 � 0:44 � 0:65 � 0:78
+0:31 � 0:18 � 0:44 � 0:65 � 0:78
:::;

+0:31 � 0:82 � 0:56 � 0:35 � 0:12
+0:00 � 0:18 � 0:56 � 0:35 � 0:12

Therefore, P(UKA=T) = 0.5023 or 50%. Given this

result, the user interface has utilized a mathematically
sound method to capture user behavior and then con-

vert it into a representation from which the user inter-
face may reason about future user intent.



Implementation

The adaptive layer of the intelligent inteface agent
layer are implemented in a prototype instantiation,

providing basic adaptations such as prediction of tool
use. Full implementation of communicationmode layer

have been designed for future completion. The com-
munications layer of the intelligent assistant layer is
currently implemented with structured text communi-

cation and graphical communication modes. The nat-
ural language communication mode is in development.

Adaption of user interfaces (e.g., adding \hot keys"
for often used actions) has been researched extensively.
Therefore, research into the adaption layer has taken

lesser priority and may be implemented in later revi-
sions.

The interface learning network is fully implemented

in C++. The network was tested by instantiating the
36 node network shown in Figure 4.

Testing the Agent

There are two basic types of testing performed for this
research: prediction accuracy and usability. Prediction
accuracy testing is performed to ensure the Bayesian

network accurately captures user behavior. Usability
testing explores the usefulness of the research product

to real users.

Prediction Accuracy Testing

Prediction accuracy testing was accomplished by ob-
serving the dynamics of the agent's suggestion gener-

ation capabilities when given a set of test cases that
mimic user behavior. We present the test case of the

implemented system. Other cases can be found else-
where (Harrington 1996).

As implemented, GESIA makes two main suggestion
to the user upon login. The suggestions are a a com-

bination of suggestions including Bayesian knowledge
base (BKB) �lename, system function, and communi-

cation mode. After system login, two BKB �lenames
are suggested. Once one is chosen or both rejected
an additional two suggestions appear, giving suggested

function and communicationmode combinations. This
combination or double suggestion must be completely

true (both parts) for the user to accept it.

In this case the probabilities of the six interface
information nodes used to determine what sugges-
tions GESIA will make are tracked: \Using Knowl-

edge Acquisition (UKA)", \Using Inference Engine
(UIE)", \Using Text Communication (UTC)", \Using

Graphical Communication (UGC)", \Using Full5.bkb
(UFB)", and \Using A�t.bkb (UAB)". The user starts

PESKI for the �rst ten times with the intention of us-
ing the Inference Engine function with Text Communi-

cation and Full5.bkb. This user accepts any suggestion

that is completely true and rejects any suggestion that
is not completely true. After the initial ten times the

user switches their preference to the Knowledge Ac-
quisition function with Graphical Communication and
A�t.bkb, accepting or suggesting behavior based on

these new preferences.
The results of this test are shown in Figure 5. These

results clearly show the IIA's ability to quickly adapt
to the user's change in preferences. It should also be

noted the acceptance and rejection of suggestions, es-
pecially the rejection of suggestions that are partially
but not fully correct, have an interesting a�ect on the

probability distribution throughout the network. We
\penalize" both parts of a rejected double suggestion,

even when one part may be true. This fact is the rea-
son for UAB's rapid increase in probability after the
17th step while UKA only maintains a steady rise in

probability.
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Figure 5: learning network Learning with Double Sug-
gestions

Usability Testing

We have performed preliminary usability tests using
GESIA with PESKI (Banks et al. 1997). There are

three general tests we used to evaluate the reliability
of interface intelligence. The �rst test is a collection of

physical work requirements that quantify procedures
the user must follow to get work done. How positively
or negatively the user feels about using the interface

intelligence is captured in the second test. The third
test measures responsiveness burdens the intelligence

places on the interface.

Physical Work Requirements Collecting the
physical work a user performs is one way to evaluate

the usefulness of the interface intelligence. Physical
work requirements such as keystrokes, menu selections,

reading, and button presses are collected for a user uti-
lizing the interface intelligence. Care must be taken
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Figure 4: An Interface Learning Network for PESKI

when drawing conclusions from physical work require-
ments since this data does not form a complete picture
of interface usability.

The current implementation of GESIA makes sug-

gestions pertaining to what system function, commu-
nication mode, and BKB �le the user wants to access
at system startup. Therefore, this test concentrates

on physical work required of the user if the user starts
these choices themselves versus the physical work re-

quired if the user interacts with GESIA to make these
choices.

Our results clearly showed using the GESIA's sug-
gestions yields a considerable savings in physical work

for the user. The physical workload without GESIA is
seven-fold over that with the IIA. The data was com-

pared with the data from prediction accuracy tests to
ensure a true cost savings in physical work over time.
The results show that over time the user receives a

substantial work savings when using the IIA instead of
making startup choices manually.
Acceptance of the Agent User acceptance data is

collected by exposing a number of users to the inter-
face intelligence and eliciting user opinion on a written

survey. This survey is a carefully constructed list of
instructions and questions that guides the user though

GESIA's capabilities and requires exact and free-form
responses from the user concerning these capabilities.

Users were generally satis�ed with the timeliness of
operations, although they seem to �nd the automatic
operations performed by GESIA slightly slower than

performing the same operations manually. This per-
ception is a result of the speci�c implementation of

GESIA discussed below.

Furthermore, users found the double suggestion of

system function and communication mode more con-
fusing than manually choosing the system function and

communication mode from the main window. This re-
sult is somewhat supported by the fact that the work

requirements for manually selecting the system func-
tion and communication mode are low.

The usefulness of GESIA's suggestions are as ex-
pected. Users generally found the IIA to be useful,

although these results are most probably in
uenced by
the results for user opinion on timeliness and complex-
ity. A more indepth user acceptance study is desired to

collect long term opinions of GESIA from many users
using PESKI to perform real tasks.
Responsiveness of the Agent Responsiveness of

an interface is typically an important criteria for inter-
face users. Therefore, testing the responsiveness of the

interface, particularly the e�ect intelligence has on in-
terface responsiveness, is a collection of user opinions

and empirical data. The user opinions are collect in
the same manner described in the user acceptance test



description. Empirical data is taken by collecting real

time data during interface functions that are in
uenced
by the interface's intelligent structures. Together, this

data can give a good picture as to the acceptability of
the intelligent user interface's responsiveness.

The initial implementation of Bayesian networks for
use by the interface leanring network was not opti-
mal. The real time data indicated the implementation

of the IIA created some user noticeable pauses. The
pauses were created mainly by the inferencing method

used for the Bayesian network. The user acceptance
study showed that users found the pauses noticeable

but acceptable. Based on this feedback, we have reim-
plemented the Baysian networks and have greatly im-
proved e�ciency. Previous delays of three to �ve sec-

onds have been reduced to under a second.

Future Research

The prototype interface learning network shown in Fig-
ure 4 needs to be expanded to capture additional ac-
tions. Expansion of the number of actions GESIA will

monitor may allow for a more accurate model of the
user's behavior. More importantly, though, is deter-

mining what is important to monitor in the domain
to e�ectively and e�ciently predict the user's intent.

Research performed at Microsoft for their current im-
plementation of wizards in O�ce 97 indicates they
spent many hours determining how best to construct

the Bayesian networks used (Horvitz 1996). Most re-
searchers do not have the time nor the resources to

perform such extensive knowledge acquisition. There-
fore, we need to determine what is important for use in
the system as the user is using the system, yet be able

to make accurate predictions with limited knowledge.
Research has begun in this area (Brown et al. 1997).

Our current implementation of GESIA uses a dy-
namic \hand-coded" interface learning network. We

determine a priori the actions we will monitor. This is
not unlike Maes' hand-coded situations (Maes 1994).

This a priori determination limits the number of user
actions we must monitor in our system. While al-
though most \hand-coded" user models are static, ours

allows the dynamic addition and deletion of nodes asso-
ciated with a particular Bayesian knowledge base. We

limit the number of BKB associated nodes allowed in
the user's interface learning network at any one time.
If the user loads a BKB that is not represented in the

current network, we add it to the network. If we have
reached our network size limitation (currently set at

a hard limit of �ve BKB nodes), we delete the lowest
probability node from the network. In this way, the

most relevant (i.e., highest probability) nodes are in
our network at any point in time.

The intelligence of the interface can be enhanced if

the interface is able to interpret why it makes bad pre-
dictions. We propose a dynamic \meta-level" of infer-

encing, capable of modifying the user's interface learn-
ing network topology as the user performs action in
PESKI. To realize this, we must be able to determine

\real-time" what is happening with the user. Most us-
ability studies are done \o�-line" and have no imme-

diate bearing on the user model. We desire to de�ne
several objective metrics (versus subjective usability

comparisons) that give us insight into the accuracy of
our user model and allow the network to be dynam-

ically altered. The incorporation of temporal reason-

ing into this representation would allow the interface
to predict user traits based on the patterns (Young &

Santos 1996).

Conclusions

We have presented a new domain for the use of
Bayesian networks. The interface learning network
provides GESIA with an e�ective knowledge represen-

tation for user, user class, and interface behavior. The
use of Bayesian networks over rule-based systems to

accurately model the user better captures the uncer-
tainty of user actions by using sound semantics and

a �rm mathematical basis. Initial tests show notica-
ble savings in the user's physical workload while ac-
curately predicting users' behavior. Furthermore, the

momentum of learned behavior in one direction can be
reversed and changed to another direction of behavior

quickly.

Large networks will cause an exponential explosion
in computations. This can reduce the practical size of

a network using this representation. However, this can
be overcome by placing simple restrictions on network
topology. Furthermore, the learning network is only

e�ective if used properly. In our research, the way
suggestions were presented to users had a great impact

on the users' evaluation of usefulness. Further usability
studies will need to be conducted in order to determine
the best way to present suggestions to the user.
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